
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO10674
TITLE: Dynamic Detection of Malicious Code in

COTS Software

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Commercial Off-the-Shelf Products in

Defence Applications "The Ruthless Pursuit of
COTS" [l'Utilisation des produits vendus sur
etageres dans les applications militaires de
efense 1'TExploitation sans merci des produits

commerciaux"]

To order the complete compilation report, use: ADA389447

The component part is provided here to allow users access to individually authored sections

of proceedings, annals, symposia, ect. However, the component should be considered within

he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADP010659 thru 'M eVASSIFIED

16-1

Dynamic Detection of Malicious Code in COTS Software

Martin Salois and Robert Charpentier
{Martin. Salois@drev.dnd.ca, Robert. Charpentier@drev.dnd.ca}

Defence Research Establishment Valcartier
2459 Pie XI Blvd. North

Val B6lair, Qu6bec, Canada
G3J 1X5

April 2000

Abstract pected from in-house development, and it usually enjoys
much better long-term support.

COTS components are very attractive because they can Unfortunately, an application that is developed by
substantially reduce development time and cost, but they some other company - possibly in another country -
pose significant security risks (e.g. backdoors, Trojan can pose a serious security risk. Although the threat from
horses, time bombs, etc.). viruses has been known for years and many potent corn-

These vpes of attack are not detected by standard mercial protection tools are available, other threats such
virus detection utilities, which are essentially the only as Trojan horses, time bombs, logic bombs, covert chan-
commercially available tools that work directly on bina- nels and so on are not as easily dealt with. Once they
ries. This paper presents a dynamic approach that intends become known, virus detection tools can cover some of
to address this problem. them, but the key is "become known": most detectors

The complexity of a real time-bomb attack that dis- work only with known and already analysed threats. As
ables a program after a fixed period of time is shown, will be shown, there are virtually no commercial tools of-
Building on this example, a method that works at the bi- fering a reasonable level of protection against unfamiliar
nary level and that could be used to facilitate the study attacks.
of other time bombs - and hopefully of all ýypes of mali- DREV initiated the MaliCOTS project in 1997 to ad-
cious actions -is presented. This is the first step toward a dress this situation. This paper first compares dynamic and
fully automated tool to detect malicious actions in all their static analysis techniques. Then some preliminary work
forms. on dynamic analysis is presented, focusing on time bombs.

The method, which monitors processor instructions di- Last, a quick overview is given of some of the commercial
rectly, is currently intended specifically for Windows NT tools currently available. A broader view of the project is
running on an Intel processor. It could easily be extended presented in [1].
to other platforms. This paper also discusses the possibil-
ity of using dynamic analysis techniques to overcome the
inadequacy of the static methods. 2 Static vs. Dynamic Analysis

Finally, a briefsurvey is presented of commercial tools
that attempt to address this issue, considering where these Program analysis can be static or dynamic, or can use
products are today and what is needed to obtain a cred- some other kind of technique that cannot clearly be classi-
ible sense of security, as opposed to the often false sense fled as one or the other. This section takes a closer look at
offered by some commercial tools. the advantages and disadvantages of static over dynamic

analysis.
First, using static analysis allows malicious code to be

1 Introduction detected without actually running the program; thus en-
suring that any malicious actions discovered will never be

COTS software has become the de facto standard in most executed. Also, static analysis can give a good idea of
organisations today. From management's point of view, the program's behaviour, for all possible execution condi-
it is often much more advantageous to buy certain prod- tions. And there is no performance overhead associated
ucts off-the-shelf than to develop them in-house. The final with static analysis: after a single successful analysis, the
product is often cheaper both in time and in money. It is program can run freely. But despite these beneficial prop-
more robust and offers more features than what can be ex- erties, there are some inconveniences. The main drawback

Paper presented at the RTO IST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS" ", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

16-2

to using static analysis is the undecidability of many inter- This section starts by giving a definition of a time
esting properties: they cannot be determined for all cases. bomb. Then the details of a time bomb case study are
Also, the analysed code needs not be the one that is actu- presented. Finally, all possible ways of getting the time in
ally run: changes can creep in between analysis and exe- the Win32 subsystem are examined to outline a possible
cution. The static analysis of source code is particularly way to detect time bombs.
vulnerable to this last difficulty, because the code must be
compiled. Not only is there a possibility that a malevo- 3.1 Definition
lent entity will modify the source code directly, but the
language libraries used might be modified so that changes A time bomb is malicious code that is triggered in a pro-

are not apparent. gram when a specific logical condition relating to time is

Basically, dynamic analysis has the opposite pros and met. "Time" here refers to the actual system time and date

cons. One cannot detect malicious code dynamically be- or a countdown in seconds, hours, days, or even months

fore it is executed, give or take a few commands. For ex- or years. Although it could be argued that limiting the

ample, imagine a five-instruction sequence that, taken to- number of executions (before declaring the expiration of

gether, forms malicious code. An analysis tool might keep evaluation software, for example) could be called a time

track of the last few instructions or use a list of suspicious bomb, in this analysis it is considered a logic bomb.

instructions and be able to block the execution of the fifth For the purposes of security and detection, it does not

command. However, this method could be rather limited matter whether or not the time bomb was inserted inten-

on its own, because of the lack of a more global view. But tionally. An unintentional time bomb can still compromise

dynamic analysis does not suffer from the undecidability the system.

characteristic of static analysis, because all run-time val- Typical examples of time bombs are time computa-

ues are available or can be made available at any point in tions that prevent a program from working after z hours,
the program. Although dynamic analysis can have signif- minutes, days, etc. If this type of time bomb is used ap-

icant overhead in run-time performance, as compared to propriately, perhaps to protect proprietary software, it is

static analysis, in the end it has one major advantage: the not really "malicious." Even so, the process is rarely done

analysed code is the code that actually runs, without any in a correct and standard way, as will be seen in the next

possibility of alteration. section, so it is still considered an unacceptable risk.

Although some detection techniques cannot be clearly Other time bombs include viruses that are launched at

defined as static or dynamic, most are one or the other, specific dates: one that wishes "Merry Christmas!" or that

Some innovative techniques, however, clearly use hybrid commemorates a special day.

analysis. For example, Colby [3] proposes a way to define Of course, many programs legitimately need to use

guards statically for loop expressions and to determine if time triggers. For example:

they can be proven to be effective; if not, dynamic guards * Virus scanners that you can schedule to work every
are inserted to be checked at rmn-time, when the boolean day at a specific time,
value of the expression can be computed.

It seems clear that static and dynamic techniques could e Meeting schedulers that notify you of appointments,
very well be combined to ensure better success in the dis- - Automatic backup programs,
covery of malicious code. A tool could do all that is pos-
sible with static analysis to identify vulnerable areas pre- * Games that limit the time to finish a puzzle.
cisely and then use dynamic analysis to try to eliminate
them. For example, the tool could pinpoint areas of code Deciding ifa "time bomb" is malicious or not has been

where it knows or can determine that static analysis will left out of present concerns, although possible ways of de-

fail, and then concentrate on these segments using a dy- ciding automatically will be discussed later on. For the

namic method. Thus the overhead of a dynamic process moment, our only interest is in locating them; automatic

running on top of a program could be greatly reduced, al- classification mechanisms are useless without tools for de-
lowing better surveillance of an untrusted program without tection.

exceeding a tolerable level of intrusion.

3.2 A Case Study

3 Time Bomb Detection by Monitor- To get a feel of what a time bomb may look like in as-
sembly code, along with its possibly great complexity, a

ing real-world example - from a source that shall remain

nameless - will be examined. It will simply be called
Preliminary studies suggested the need to focus on a small SoftBomb.
subset of malicious code to begin with. Since a guinea pig SoftBomb is distributed as a DLL. A demo version is
was at hand - a time bomb in a program library that was available that will only work for one month. Thus, in ef-
being tested - it was decided to study time bombs more feet, there is a time bomb that detects that the same day in
closely. the next month has passed and triggers the stopping of the

16-3

Code Excerpt 1: A legitimate time bomb

SYSTEMTIME systemTime;

GetSystemTime (&systemTime)
if(systemTime.wMonth > previousSystemTime.wMonth){

//Then do something
//...

executable. Since SoftBomb is a DLL, it cannot actually 3.2.1 Getting the Date
stop the execution; it sends an error message saying that
the evaluation time has expired when you try to initialise Since simply getting the date with the GetSystemTime
it. For the sake of simplicity, we will continue to say that function would be too obvious, SoftBomb uses another ap-

it "stops" execution. proach: it opens a file that it is certain to find in the main
Windows NT directory, and gets the time of the last access

A time bomb needs to get the system time from some- to this file.
where. As will be seen in the next subsection, there are In this case, the file is win. ini. Since it is an es-
many ways of doing this, even restricting our studies to sential configuration file for Windows NT, it is always
legal Win32 methods. After obtaining the date/time, the present and, by opening it, SoftBomb updates its access
time bomb will check it against an installation date that it time. Hence, it gets the system date after transforming it
stored somewhere safe - preferably a place unknown to from a file-time structure to a system-time structure.
the user so he cannot simply delete it. This last require- The actual code is shown in Code Excerpt 2 (note that
ment is not actually part of the time bomb itself, so this all the assembly code in this section was obtained by us-
paper will not explore the assembly details of how Soft- ing Sang Cho's powerful Windows Disassembler [2]). The
Bomb stores the installation date, only the general scheme comments after semicolons are inserted automatically by
and how it can be bad for user systems. the disassembler, which identifies common Win32 API,

The idea behind a successful protection scheme is to even with some form of static def/use analysis as, for ex-
make it as obscure and as irrational as possible. If it is ample, at line 29 where it knows that ebp contains the
done in the simplest and most sensible way, crackers will address of the function CreateFile, inserted at line 23.
have an easy time breaking it. For example, say you want The comments in italics after two slashes were inserted
to know if the month has changed in a legitimate time manually after analysis, to ease comprehension and to ex-
bomb. You would simply proceed as is shown in Code Ex- plain what is going on in the lines that were skipped to
cerpt 1. However, this way of doing things would be too save space. Reserved keywords for instructions are high-
simple a protection scheme. As will be seen, SoftBomb is lighted in bold. Line numbers are used because they are
much more "clever." more convenient than memory addresses.

Note that in Win32 systems, the time and the date Looking at the code more closely, it can be seen on the

travel around in the same structures most of the time. For first line that SoftBomb gets the system directory, which

instance, GetSystemTime gives both time and date. is c : \winnt\system32, and stores the address of this

There is no function called GetSystemDate. Unless string in ecx (line 2), then in eax in the function called

noted otherwise, the term time will be used to mean both at line 5.

time and date. After that, it surreptitiously changes the string, charac-
ter by character, until it becomes c : \winnt\win. ini

This subsection takes a look at how SoftBomb gets the (lines 9, 11, 16, 17, 18, 23, 25, 26), interlacing this change
system date, how it does multiple checks on it, and where with the normal operations necessary for the next function
the installation date is stored. As a bonus, for complete- call to the API CreateFileA function (line 28), which
ness and possible future use, a few pointers are given on requires 7 parameters (the 7 preceding pushes). This func-
how one might crack SoftBomb. tion is used to open the existing file win. ini.

First it must be mentioned that the time bomb in Soft- Then SoftBomb uses the functions GetFileTime
Bomb is located in a particular function that the user must and FileTimeToSystemTime to get the file's last ac-
call to initialise the library before use. Since SoftBomb is cess time and convert it into the desired system time for-
a DLL, this simplifies the analysis a little because DLLs mat. SoftBomb now has the current system time and date
are meant to be used by other programs that are not sup- to do with as it pleases.
posed to know their inner workings. This means that they
have clear-text names and clear-cut boundaries for func- 3.2.2 Checking the Date
tions. This fact allowed us to narrow the search to a small
fraction of the whole DLL. This will not always be the To be certain that a cracker could not simply change one
case: a time bomb could be scattered over a much larger jump instruction to crack it, SoftBomb checks the date two
fragment of code. different ways. And then to be really sure, it checks again.

16-4

Code Excerpt 2: Getting the current date

1 :IF0017AD call ebp ;;jmp KERNEL32.GetSystemDirectoryA

:1F0017AF lea ecx, dword[esp-00000288] // "c:."winnt"system32"ataddress ecx

3:1F0017B6 push 0000005C

4 :1F0017B8 push ecx

5 :1F0017B9 call 1F0056F0 // among other things, copiesecxineax

6 :1F0017BE add esp, 00000008
7 :1F0017CI test eax, eax

8 :1F0017C3 je 1F00195D
9 :1F0017C9 mov byte [eax+01] , 57 // changes memory to "c:"winnt"Wystem32"
,0 // ... The next 6 instructions are inc eax 6 times (so eax-eas-+6).

1 :lF0017D3 mov byte [eax-04] , 49 // changes memory to "c:"winnt"Wlstem32"

12 :1F0017D7 inc eax
13 :1F0017D8 push 00000000 //hTemplateFile=NULL
14 :1F0017DA push 00000080 divFlagsAndAttributes - FILE ATTRIBUTE'NORMAL
15 :1F0017DF push 00000003 !/dwCreationDistribution = OPEN'EXISTING

16 :1F0017E1 mov byte [eax-041 4E //changes memory to "c."winnt"WINtem32"
17 :1F0017E5 mov byte [eax-03] , 2E 1/changes memory to "c:"winnt"WJN~em32"
18 :1F0017E9 mov byte [eax-02] 49 //changes memory to "c."winnt"WN.Im32"
19 :1F0017ED lea ecx, dword[esp+00000294]

2 :1F00017F4 push 00000000 /ilpSecurityAutributes -NULL

21 :IF0017F6 push 00000003 //dwShareMode
22 :1F0017F8 mov ebp, dword[IF0131941

2 :1F0017FE mov byte[eax-01] , 4E // changes memory to "c:"winnt"WIN.1N32"

24 :1F001802 push 80000000 // dwDesiredAccess = GENERIC'READ
25 :1F001807 mov byte [eax] , 49 // changes memory to "c:"winnt"WIN.IN12"
26: 1FOO180A mov byte [eax+011 , 00 // changes memory to "c: "winnt"WIN.INJ"

27 : 1F00180E push ecx // lpFileName = "C: "winnt"WIN.INI"

2 F :IFOO18OF call ebp ;;jmp KERNEL32.CreateFileA // (7 parameters=7 pushes)

23 //... Checks for errors. Loads the time in registers for the following pushes.
30 :1F001831 push eax 1/ IpLastWrite Time
31 : 1F001832 push ecx // lpLastAccess Time
3 : 1F001833 push edx l!lpCreationTime
33 :1F001834 push esi // hFile

34 :1F001835 call dword[IF013190] ;;jmp KERNEL32.GetFileTime// (4 params=4 pushes)

35 //... Checks for errors. Closes the file. Puts the file time in registers for following pushes.
36 :1F00185E push eax // lpSystem2Jme

37 :1F00185F push esi // *lpFileTime
38 :1F001860 call edi ;;jmp KERNEL32.FileTimeToSystemTime// (2 params=2 pushes)

39 // ... Checks for errors.

So, there are three different checkpoint that are performed The second and third checkpoints are somewhat less
one after the other, each using different logic to see if the independent than the first. In fact, they could probably be
expiration year, date, and day have been reached or to considered as a single checkpoint since the second jumps
check if the date itself has been tampered with. Let us into the third to complete somc checks. However, for clar-
look at them more closely. ity, it is better to view them as two different phases.

The first checkpoint is pretty simple. It is shown in In Code Excerpt 4, the second checkpoint first corn-

Code Excerpt 3. In the first line the installation date is pares the install year with the current year (line 1). If they

compared with the current date, as obtained in the previ- are not the same, it moves on to the third checkpoint (line

ous subsection. If the installation year is higher than the 2). If they are equal it checks the install month against the

current year, it assumes there is an error, reset its struc- current month (line 4) and, if they are not the same, moves

tures and checks again. If there is still an error, it goes on to verify that only one month has passed and that the

to the second checkpoint. There is actually a bug in Soft- same day in the next month has not yet passed (line 7 and

Bomb at line 3: if the year has changed, it stops initialis- lines 10-19). If it is still the same month, it checks to see

ing SoftBomb, giving an expiration message. Therefore, if if the date is correct - that the system has not gone back

you install SoftBomb on December 3 l , 1998, it expires in time (line 7), decides that SoftBomb has not expired,
on January 1 't, 1999! Otherwise, the check continues by and finishes its initialisation (jump at line 8).

verifying that the expiration month has not passed. If it SoftBomb then enters its third and final checkpoint,
has, it ends the execution, shown in Code Excerpt 5. At this point, it knows that the

16-5

Code Excerpt 3: First checkpoint

:1F00186E cmp word[esp+16] , ax //installation year, current year
2 :1F001873 ja 1F001897 //installyear/ current year (error, double check)
3 :1F001875 jne 1F001A20 //stops ifyear has changed
4 :IF00187B mov eax, dword[esp+1A]
5 :1F00187F xor ecx, ecx
6 :1F001881 mov cx, word[esp+0000008A]
7 :1F001889 and eax, OOOOFFFF

S :1F00188E inc eax
9 :1F00188F cmp eax, ecx //install month+] (expiration month), current month
10 :1F001891 j1 1FOOIA20 //stops if expiration month i current month

Code Excerpt 4: Second checkpoint

I :1F001983 crop wordlesp+16] , ax //install year, current year
2 1F001988 jne 1F0019C6 I/ifinstall!= current, go to next checkpoint
3 :1F00198A mov ax, word[esp+263
4 :1F00198F cmp word[esp+lA] , ax I/install month, current month
5 :1F001994 jne 1F0019A2 //if install !ý current, checkday
6 :1F001996 mov ax, word[esp+2A]
7 :1F00199B cmp word[esp+18], ax I/install day, current day
8 :1F0019A0 jbe 1F0O19FC i/same year & same month & install current, OK
9 - - Inserted by disassembler to indicate a block's ending/starting.
10 :1F0019A2 xor eax, eax
11 :1F0019A4 mov ecx, dword[esp+i1A]
12 :1F0019A8 mov ax, word[esp+261
13 :1F0019AD and ecx, 0O00FFFF
14 :1F0019B3 sub eax, ecx //current month, install month
is :IF0019B5 cmp eax, 00000001
16 :1F0019B8 jne 1FOO19C6 // if difference= 1, then go to next checkpoint
17 :1F0019BA mov ax, word[esp+2A] i/difference = 1, checkifsame day not reached
18 :1F0019BF cmp word[esp+18] , ax //install, current
19 :1F0019C4 jae lf0019fc //if same day next month not passed, ok

year has changed (actually, because of the previously men- Once again, when it comes to hiding information for a
tioned bug, SoftBomb never gets here, but let us pretend it protection scheme, obscurity is the way to go. You want
does). At lines 1, 2, and 3, it checks to see if the difference to hide the information as deeply as possible, in a place
is only one year; if not, it stops. If the year difference is where the user will not look; or should he decide to look,
indeed only one, it moves on to check if the current month where he will not find anything suspicious.
is January (lines 4 and 5) and if the current month is De-
cember (lines 6 and 7), the only possible situation for a SoftBomb's protection scheme is cunning in this sense

one-month evaluation. If this is not the case, execution because it does nothing for the first few uses. It waits

stops; if it is, one final verification is made to check that a random number of times before storing an installa-

the expiration day has not passed. Finally, if all is clear, tion date on the hard drive. And a careful or suspi-

the program continues with its normal initialisation. cious user monitoring the first few runs of SoftBomb to
see if it is legitimate is unlikely to catch the suspicious

3.2.3 Storing the Date write to the Registry - the Registry is where all of
Windows NT's configurations are stored - because Soft-

In the previous subsection, the installation date was men- Bomb stores the installation date there using a key incon-
tioned. But where does SoftBomb store the date on which spicuously named FontAttributes. A key with this
it was installed? As already stated, this question is ac- name would easily be overlooked, especially since it is
tually outside the scope of time-bomb detection. But the placed in a region of the Registry where the configuration
reader might be interested, so SoftBomb's approach will of the desktop is kept (registry path HKEY CURRENT_
be outlined here. USER\Control Panel\desktop). Among the le-

It was also previously mentioned that it can hardly be gitimate keys stored at this place, there are Au-
considered malicious for a company to try to protect its toEndTasks, Pattern, IconHorizontalSpac-
software but that the methods sometimes used can be quite ing, IconVerticalSpacing, TileWallPaper,
malicious if they are not regular and standard. The follow- Wallpaper, and so on. It is easy to see why one called

ing discussion supports this point. FontAttributes would not be looked at twice.

16-6

Code Excerpt 5: Third checkpoint

:1F0019D9 sub eax, ecx I/install year, current year
2 :1F0019DB cmp eax, 00000001
3 :IF0019DE jne 1F001A20 //if difference!= I then stop

4 :1F0019E0 crop word[esp+261, 0001 I/current month, January (01)
5 :IF0019E6 jne 1F001A20 /!if current month not January then stop
6 :1F0019E8 cmp word[esp+la] , o00C I/install month, December (c=12)
7 :F0019EE jne 1f001a20 # if install month not December then stop
g :IFOO19FO mov ax, word[esp+2a]
9 :iF0019F5 cup word[esp+l8] , ax Ilinstall day, currentday
10 :IF0019FA je 1F001A20 //Oc=jb) if install day passed then stop
Hi // ... Continue with normal initialization.

Finally, another random number of executions after Either solution could be used by a dynamic protection
expiration, SoftBomb creates another Registry key in the tool to thwart the time bomb, but the first seems more di-
same registry path, called DragDelay. The purpose of rect and easier to implement. One must simply reverse the
this key is not completely clear, but it seems to be a flag jumps at run-time, a simple enough task for anyone famil-
that indicates that SoftBomb has expired. Since it is not iar with debuggers.
really part of the time bomb itself, it was not investigated
further. This concludes our case study. The following sections

Now that it has been shown how a real-world soft- look at the various ways to get the system time and date.
ware product hides the installation date, it is trivial to
demonstrate how the activity could be bad for a system:
if programs were to write to the Registry anywhere they 3.3 How to Get the Time and Date
please, without ever cleaning up behind them, a mainte- This section explores the many ways to get the system
nance nightmare would result. Legitimate and correct pro- time and date in Windows NT via the Win32 subsys-
grams have a difficult enough task cleaning up their own tem. The authors do not pretend that the list is exhaustive:
mess; we cannot have programs writing where they are not smart, malicious attackers will always come up with new
supposed to. Clearly, such behaviour is unacceptable. approaches. Also, it would take many pages to illustrate

all the possible ways that the research team was able to

3.2.4 Cracking It devise to get the system time. A simple list of the Win32
functions that can provide the time or date and of the func-

Only one matter remains to conclude this case study: how tions that can modify or control the time or date in any
could the time bomb in SoftBomb be circumvented? Al- way. There are many of them, with many parameters that
though some might perceive such action as a bad thing - control their behaviour, and many functions that perform
after all, cracking software products is probably illegal in essentially the same task have different implementations
most countries - this example is only an illustration. The with different names: CreateFile, CreateFileA,
results of the work could later be extended to protect a and CreateFileEx, for example. Consider this a first
system against more serious threats. For instance, a virus step in the construction of a database of knowledge on ma-
could be stopped dead in its tracks simply by dynamically licious code, a subject we will return to.
stopping the time bomb that triggers it. First, let us consider functions that can give the time

So, how could a "cracker" crack SoftBomb? That is, of day (or the date) directly or indirectly in combination.
how can one remove the protection? There are many pos- Code Excerpt 6 presents the signatures of these functions.
sible solutions. The two most plausible ones are given here The function names are in boldface to make it easier to
or, at least, the two more practical in our view: spot them among the parameters; they are presented in al-

phabetical order.
" Systematically replace all instructions that jump to For historical reasons, many formats for the date/time

the end sequence with noops in order to avoid ever exist and are still available. For example, a date can be
getting to the stopping code. This could be done computed from a long integer containing the number of
statically with a hexadecimal editor, or dynamically, seconds since 1970, or it can be directly stored as dd- mm-
on the fly. yyyy, or yyyy-mm-dd, and so on. This explains in part

the large number of functions that can give the time/date.
" Add a routine to SoftBomb that would execute at the It has been seen that the combination of Create-

beginning of the initialisation function. This "hook" File, GetFileTime, and FileTimeToSystem-
would simply delete the two registry keys identified Time can be used to find the date. Following the same
in the previous subsection and transfer control back pattern, one could, for instance, create a file in MS-DOS
to the normal flow of the function, mode (which is provided for backward compatibility), do

16-7

Code Excerpt 6: Functions that can be used to get and compare time and/or date

I LONG CompareFileTime(CONST FILETIME *lpFileTimel, CONST FILETIME *lpFileTime2);
2 HANDLE CreateFile(LPCTSTR ipFileName, DWORD dwDesiredAccess, DWORD dwShareMode,
3 LPSECURITYATTRIBUTES ipSecurityAttributes, DWORD dwCreationDistribution,

DWORD dwFlagsAndAttributes, HANDLE hTemplateFile);
5 BOOL DosDateTimeToFileTime (WORD wFatDate, WORD wFatTime, LPFILETIME lpFileTime)
6 BOOL FileTimeToDosDateTime(CONST FILETIME *lpFileTime, LPWORD lpFatDate, LPWORD lpFatTime);
7 BOOL FileTimeToLocalFileTime(CONST FILETIME *lpFileTime, LPFILETIME lpLocalFileTime);
8 BOOL FileTimeToSystemTime(CONST FILETIME *lpFileTime, LPSYSTEMTIME ipSystemTime);
9 HANDLE FindFirstFile(LPCTSTR lpFileName, LPWIN32 FINDDATA IpFindFileData);
10 HANDLE FindFirstFileEx(LPCTSTR lpFileName, FINDEX INFO LEVELS flnfoLevelld,
11 LPVOID lpFindFileData, FINDEXSEARCHOPS fSearchOp, LPVOID tpSearchFilter,
12 DWORD dwAdditionalFlags);
13 BOOL FindNextFile (HANDLE hFindFile, LPWIN32_FIND DATA lpFindFileData);
14 BOOL GetFileTime(HANDLE hFile, LPFILETIME lpCreationTime, LPFILETIME lpLastAccessTime,
i5 LPFTLETIME lpLastWriteTime);
16 VOID GetLocalTime(LPSYSTEMTIME lpSystemTime);
17 LONG GetMessageTime (VOID) ;
18 VOID GetSystemTime(LPSYSTEMTIME lpSystemTime);
IS VOID GetSystemTimeAsFileTime (LPFILETIME lpSystemTimeAsFileTime);
20 DWORD GetTickCount (VOID) ;
21 NET API STATUS NetRemoteTOD(LPTSTR UncServerName, LPBYTE *BufferPtr);
22 LONG RegEnumKcyEx(HKEY hKey, DWORD dwIndex, LPTSTR lpName, LPDWORD lpcbName,
23 LPDWORD ipReserved, LPTSTR lpClass, LPDWORD lpcbClass, PFILETIME lpftLastWriteTimel;
24 LONG RegQueryInfoKey (HKEY hKey, LPTSTR lpClass, LPDWORD lpcbClass, LPDWORD ipReserved,
25 LPDWORD lpcSubKeys, LPDWORD lpcbMaxSubKeyLen, LPDWORD lpcbMaxClassLen,
26 LPDWORD ipcValues, LPDWORD lpcbMaxValueNarneLen, LPDWORD lpcbMaxValueLen,
27 LPDWORD ipcbSecurityDescriptor, PFILETIME lpftLastWriteTime);
28 BOOL ReportEvent((HANDLE hEventLog, WORD wType, WORD wCategory, DWORD dwEventID,
29 PSID ipUserSid, WORD wNumStrings, DWORD dwDataSize, LPCTSTR *lpStrings,
3o LPVOID ipRawData);
31 BOOL SysternTimeToFileTime(CoNST SYSTEMTIME *lpSystemTime, LPFILETIME lpFileTime);
32 BOOL SystemTimeToTzSpecificLocalTime (LPTIME_ZONE_INFORMATION ipTime Zone Information,
33 LPSYSTEMTIME IpUniversalTime, LPSYSTEMTIME ipLocalTime);
34 MMRESULT timeGetSystemTime (LPMMTIME pmmt, UINT cbmmt);
35 DWORD timeGetTime (VOID);

a GetFileTime, and then do a FileTimeToDos- date of the event, which is automatically recorded by the
DateTime to get the date in a different format that could mechanism. Many Win32 executables handle incoming
be converted to system time. messages - mouse clicks and keyboard commands, for

Remember that the idea for a malicious scheme is to instance - this way, so an attacker could use the function
confuse an eventual detection process. So instead of creat- GetMessageTime to get the elapsed time between the
ing a file, one could write a null character to a known file starting of Windows NT and the handling of the message.
or simply open it. We will not attempt to cover all such If an attacker knows that his target system obtains time
variations. information from a network, he can use the "network re-

The functions in lines 9, 10, and 13 could be used to mote time of day" function (line 21).
go through the system directory files to extract the most This concludes our survey of how to get the time and
recent date. Since the files in this directory are accessed date. Now, let us look at two ways to set a time bomb that
often, at least the date will almost certainly be correct, if do not require the application itself to look at the time. The
not the time. Similarly, the registry functions (lines 22, signatures for these functions are given in Code Excerpt 7.
24) could be used to get the last access time of often-used
registry keys. If the target is on a network, one can simply ask the

Via the logging mechanisms, it is possible to know system to wake the executable code up at a given future
when Windows NT was started. In many installations, the time. Of course, one must assume that it will still be run-
machines are rebooted every day. If that is case, the date ning then.
is available directly. If it is not the case, functions that Similarly, in the next two functions if one knows that
give the elapsed time since the last reboot (lines 20, 34) the system runs for extended periods of time, one can set
could be used to calculate the current date and time. A up a timer that will "beep" at regular intervals: several
program could send a message to itself and then get the days or even weeks.

16-8

Code Excerpt 7: Functions to set the system time, a file time or to set a timer

NET API STATUS NetScheduleJobAdd (LPWSTR Servername, LPBYTE Buffer, LPDWORD JobId);
2 UINT SetTimer (HWND hWnd, UINT nIDEvent, UINT uElapse, TIMERPROC ipTimerFunc);

3 BOOL SetWaitableTimer(HANDLE hTimer, LARGE_INTEGER *pDueTime, LONG iPeriod,

4 PTIMERAPCROUTINE pfnCompletionRoutine, LPVCID lpArgToCompletionRoutine, BOOL fResume);

3.4 Monitoring for Time Bombs 3.4.2 Comparing with Current Time

Based on these examples, it is now possible to propose In this method, a monitoring tool would be created that
ways to detect a time bomb in an executable code. Let us is similar to what Jeffery proposed in [5]. A full-blown
look briefly at two possibilities: virtual machine is not needed; only a way to control the

execution of applications and the ability to examine (and

" Hook - that is, "intercept and redirect" in Win32 possibly change) the target program's memory.

terminology - all of the time-supplying functions A specialised monitor is needed, one that gets the time

that were enumerated in the previous section. De- and date for itself. Then it runs the target program, opcode

termine who calls them and watch the callers for by opcode, and checks to see if it uses data equivalent to
anomalous behaviour. the time or date to control the execution flow. If so, and if

the tool is being used in a certifying environment, it raises
"a flag telling the test engineer where to check the code

onThe detection tool itself can get the date and verify more carefully. If it is not being used in such an environ-
on the fly, at assembly instruction level, if any data ment, all it could do is to stop the application at that point,
that is equivalent to the date is used to determine the wantesrndaifofuhrisrcin.Bcue

resuts f cnditona jups.warn the user, and wait for further instructions. Becauseresults of conditional jumps. assembler code could not be provided for the user to ver-

ify, the message would have to be much simpler.
Once more, "time" here really means "time and date." This method is certainly more powerful than the pre-
In the next two subsections, the pros and cons of these ceding one because it includes it. Effectively, if the target

two semi-automatic approaches are explored, then a com- program uses the time data after returning from one of the
bination of the two is proposed for maximum benefit. The "time" functions, this method will catch it. This method is
subsection concludes with possible ways to automate the also much more intrusive than the other, and consequently
process by the use of specifications. would be much slower.

3.4.1 Hooking the Time Functions 3.4.3 Combining the two

To thwart the second method, an ingenious attacker could
This approach requires a program to intercept all calls simply add a fixed number to the day, month, and year. If
made to the functions enumerated in Subsection 3.3. Coin- he adds 10, for example, and the monitoring application
mercial and freeware programs that do this have been knows that the date is "03-04-2000," it would not detect
noted, so the task should not pose too great a technical control-flow jumps that check against 13, 14, and 2010 re-
difficulty. spectively. It would think they are simply numbers that

This technique would be used in a certifying environ- the target program uses for its normal procedures. This
ment; i.e., a closed and clean environment in which to per- was illustrated in the first checkpoint of SoftBomb exam-
form extensive tests on the target program. During these ple (Code Excerpt 3), where SoftBomb adds one to the in-
tests, if the executable calls a "time" function, a flag is stallation month to know the expiration month. It could
raised to look more carefully at the program to see if its as easily have subtracted one from the current month to
behaviour has changed from normal. If it has, the tool achieve the same result.
can pinpoint the region of code where the time was ac- In order to prevent this simple scheme from defeat-
cessed from and, hopefully, indicate if there is indeed a ing the second technique, it should be combined with the
time bomb at that point in the assembly code of the exe- "hook" technique. Statically, it can recognise a call to
eutable, a precise API function. It would be a simple matter to

By itself, this method cannot actually stop a time bomb stop the target program only on "time" functions, and start
from being triggered; it can only indicate the possibility examining the application closely only from there. This
of triggering and narrow the region for a human search, would considerably reduce the level of intrusion. A simple
However, the intrusion level is minimal and the method form of dynamic def/use graph could also be implemented
would not limit the number of tests that can be run. to keep track of the time data to determine if a control flow

Evidently, if an attacker can devise a way to access the condition is using some modified form of it.
system time and date that was not included, this method To sum things up, a good way to detect a time bomb
would be powerless to detect it. dynamically would be:

16-9

1. Create a monitor that can: The first choice is impractical for long programs be-
cause of the sheer length of the specification, since one

"* control the execution of a target program, must "reverse-specify" the application.

"* break on any instruction, and The third choice is much easier to use, but it lacks gen-

"* examine the content of its memory address erality: too much detail about actual time bombs must be

space. provided. Moreover, this approach is useless against new
time bombs. This approach suffers from the shortcomings

2. Determine statically where the "time" functions are of virus detectors: it is effective only against known at-
called and insert breakpoints at these points, tacks.

3. Execute the target program step-by-step, keeping The authors believe that the second choice is the way

track of time data and checking to see if the flow to go. In the particular case of time bombs, a specification

of control is influenced by it. If so, raise a warning. might be extremely simple: should the application base
any of its normal operations on the current time? Yes or

The first step poses only technical difficulties, depend- no?
ing on the machine, the operating system and its architec- Of course, finer grain specifications are needed in the
ture. The second step is even simpler since a good disas- case where an application is required to use the time. The
sembler, such as the one that was used in Subsection 3.2, language should be able to specify that a program needs
will do most of the job for us. the time for one particular input only, and for no other. In

The last step is not that complex either. It only requires a fully automated tool, the administrator should be able
a good def/use mechanism to keep track of variables. This to tell the monitor that "If the user requests that particular
is easily done for registers, but problems may arise when action, then the application should be allowed to use the
memory is used to store variables and data structures. A time. Otherwise, it should not." For example, in a virus
resourceful attacker could use quite complex data struc- detection tool, if the user requests a scan every day at 6
tures, including recursive ones, or could even encrypt the o'clock then the monitor should know that it is permissi-
time data. Nonetheless, building a def/use graph dynami- ble for the application to check the time against 6 o'clock,
cally is a lot easier than doing it statically. The only major and not raise a warning. In any other situation it should
problem that can be foreseen is the amount of memory re- raise one.
quired to keep a "virtual double" of all time-related vari- Specifications could also be useful to organise our
ables. knowledge of malicious code. For instance, if a grammar

So far only a semi-automatic tool has been discussed: to specify malicious code is defined, a tool could be de-
the first logical step toward a fully automated tool. First, vised that would not need to be recompiled simply to add
knowledge needs to be gathered and a great deal of ex- new knowledge to it. It could have a separate database that
perimentation on the subject is required to augment our would be checked dynamically.
experience before our team can even think of automating
the process. Still, if an automated tool is ever to see the The two levels of specification could (and probably
light of day, it is necessary to tell the tool what is and what should) be combined. For example, to simplify specifi-

is not expected from a program. The following subsection cation writing, there should be only one way of specifying

addresses this subject. "get the time'" For example, let the GetSystemTime

Of course, static analysis could be combined with a function be the one and only function to get the time in

dynamic tool. In the MaliCOTS project, static analysis our user-level specification. Then the user could say some-

techniques to detect malicious code are under investiga- thing very simple like:

tion. The current plan is to combine the power of the two
types of analysis, since a preliminary study indicates that
the shortcomings of one are the strengths of the other (Sec- SYSTEMTIME systemTime;
tion 2). IFI(GetSystemTime (&systemTime))

THEN violationo);

3.4.4 Giving Specifications

Following the example of Ko's work in [6], specifications Internally, our monitoring application would look in
could be used to tell our detection tool what the normal its database where all the different possibilities of getting
behaviour of the target program is. There are three main the time are specified, link them with the GetSystem-
ways to give a specification: Time specification, check for them, and raise a violation

if any is used.
1. Specify exactly what the application does. In the end, the user-level specification might be as sim-

2. Specify what it can and cannot do in general. ple as a checklist showing all the possible malicious ac-
tions our tool can detect. The user would need only to

3. Specify a suspected vulnerability, check the kind of malice he wants to be warned against.

16-10

3.5 Time Bomb Detection - Conclusion JavaScript...), with some offering very basic protection
against COTS that does not come from the network (e.g.

In this chapter, the process of creating and using a time CD-ROM, diskettes). This is the case for two of the three
bomb was examined very closely via the example of the presented.
expiration scheme for SoftBomb. It has shown that, in as- Neeley I1I] gives a more complete list of available
sembly language, the process can he quite complex. The products, along with a good overview of what is at stake
instructions required might be spread through a large part when dealing with this sort of program. Missing from this
of the executable code. list are newer products from companies such as Norton

Although in this particular case the limitations im- and McAfee. The list of potential products is growing
posed on DLL coding forced all the malicious code to very rapidly, most of them claiming that they are the "First
be in one function, we will not always be this lucky. In Product to Offer Complete Protection for Web Users". It
a normal application, the malicious code could be scat- can be rather confusing to determine exactly what level of
tered around the entire executable file. For example, an protection is provided by current products.
intelligent programmer could do what SoftBomb does -
change the string system32 to the string win. ini -
while remaining unnoticed, by altering one letter at a time 4.1 Classifying
in seven different functions. The activity would certainly Randall [12] roughly defines three approaches to security
be more difficult to spot. Only the attacker would know for personal PCs. Most products today combine them to
which functions to execute to get the wanted result. He offer a wide range of protection. The three are:
could make the process even more complicated by spec-
ifying an order for the function calls. By adding simple Personal Firewall (Blocking) A simple gatekeeper that
checks, he could see to it that the malicious function would allows the user to control what passes in and out
be executed only by a precise sequence of operations, in of communication ports. This only blocks certain
effect creating a trapdoor. channels, without any form of content analysis, and

Many ways to get the time and date, or to set timers is therefore highly efficient speed-wise. Most fire-
to execute a task at a particular time have been described. wall vendors have a personal PC version available.
The list may not be exhaustive, but it constitutes a vital eSafe Protect Desktop uses this technology to block
first step towards identifying all the possible ways of get- communication ports.
ting system time.

Several approaches were proposed for a tool to detect Sandbox Popularised by Java, the Sandbox model en-
time bombs. Although not all have been tested experi- closes the application in a virtual environment in
mentally and no fully working prototypes have been cre- which it can cause no harm. eSafe Protect Desktop
ated, the authors feel that the ideas expressed in this chap- also uses this technology to prevent selected pro-
ter could be useful not only toward the detection of time grams from accessing specifically enumerated re-
bombs, but also toward the goal of detecting any other sources. This approach appears promising, but "Be-
kind of malicious code. Of course, any such steps would cause of the high potential for programming errors,
require that the extensive analysis that was performed for 'the sandbox is almost a moot point. You can't
time bombs be extended to other forms of malicious code. count on the sandbox for security,' says Ted Julian, a
The authors think that such a tool could relatively easily senior analyst for Forrester Research International"
be adapted to provide continuous protection, as opposed to [I1].
being used only in a testing environment. Because many
errors in computer systems are the result of user error, such Scanning Much like current virus scanners, the tool scans
a tool would certainly be valuable, the mobile code before downloading and executing

it to see if it contains potentially malicious actions.
It if does, the code if prevented from reaching the

4 COTS against COTS system. This technique is quite hard on system per-
formance. Finjan's SurfinShield and Trend Micro's

Three commercially available products that offer protec- PC-cillin 6 both use this technique.
tion against malicious code were examined, concentrating
on those that can work at the desktop level - since most Let us examine these products in a little more detail
COTS will be installed via a CD-ROM or an intranet - and then discuss their shortcomings.
and on those that are specifically designed to block mali-
cious code - thus excluding network intrusion detectors. 4.2 The Tests
Most of the products examined have sister versions that
can work at the network level. Although the selection is Three products were tested, to give an indication of what
by far not exhaustive, most of the other available prod- is available on the market. The test consisted of trying to
ucts have the same basic functionalities. Plus, almost all run the following documented hostile applets or ActiveX
of these tools work only on mobile code (Java, ActiveX, controls:

16-11

Hostile Applets Tiny Killer App Exploder Runner ActiveX Check Spy
eSafe Protect Desktop 9/9 blocked NB B NB 13/17 blocked NB
Surfinshield Online 9/9 blocked NB B B 13/17 blocked NB
PC-cillin 9/9 blocked NB B NB 13/17 blocked NB

Table 1: Comparison of what the three products successfully blocked (B: Blocked, NB: Not Blocked)

LaDue's Collection of Increasingly Hostile Applets [7] tain directories. It works as a super Access Control Lists
9 documented hostile applets. (ACL) in the sense that, in addition to normal ACLs fune-

Tiny Killer App(let) [9] A small applet that forces Net- tions, which restrict access based on users, it allows access

scape to cause an access violation, thereby killing to be restricted for individual programs. Although this fea-

the browser. ture was of great interest in theory, in reality it did not stop
the installation of the annoying WinZip icon on the desk-

McLain's Exploder [10] Exploder is an ActiveX control top (@).
that performs a clean shutdown of your computer. The interface is attractive, although rather complex, as

McLain's Runner [10] Runner is an ActiveX control is the case with most tools in this category. This is defi-
that demonstrates how to run an arbitrary program nitely not entry-level material and, contrary to the public-
on the browser's machine. ity, it is not usable by the average user. As is so often the

Smith's ActiveX checks [13] Cheeks for vulnerabilities case, the default options do not offer the best level of pro-
to 17 documented hostile ActiveX controls. tection the program can provide, which can be misleading.

Tegosoft's Spy 141 An ActiveX control that demonstrates The product provides full antivirus protection and it

how it can intercept what the user types on his key- also creates and manages file integrity checks. Overall,
board. When activated, it replaces every key one it is a good contender and it is worth following up future

types in NotePad into the sequence of letters form- versions.

ing www. tegosoft. corn - press any key, and
w appears, press 16 random keys and the whole se-quence appears, the next key begins a new line and Surfinshield Online 4.7 Finjan Software's product "en-it starts again, ables companies to conduct e-business safely by providing

proactive, run-time monitoring of executables, Java and
The Java applets were tested on both Netscape and MS ActiveX on corporate PCs" (http: / /www. f inj an.

Internet Explorer, while the ActiveX controls work only in com/product s_home .cfm).

MS Internet Explorer. It uses a central server holding security policies and
The results of the tests are presented in Table 1. All the central knowledge. When a desktop detects a security

products perform quite well on known and documented breach, it informs the server, which immediately informs
mobile code attacks, but unfortunately it is easy to find all clients, providing immediate protection for the entire
an attack that defeats them, as indicated by the tiny killer network as soon as a breach occurs. Only the client is
applet that eludes all three products, provided in the online version, the one tested; the server

Another interesting detail is that Tegosoft's Smart- resides at Finjan's. Although this configuration limits op-
Loader, the ActiveX control responsible for loading the tions, it was used to provide a fair comparison with the
Spy control, was blocked at first by SurfinShield. This is other products.
interesting because the control is signed and perfectly le- A disturbing event occurs during installation: the
gitimate. This illustrates the fact that legitimate software product says that it is going to "adjust" your browsers. It
can easily be considered illegitimate. The line is not clear is easy to understand that such a tool needs to make some
between what is legitimate and what is not. changes to a system to protect it effectively. But what ex-

actly does it do? Is the change safe? Does one really want
eSafe Protect Desktop 2.1 According to its advertis- a COTS product to change local programs?
ing, Aladdin Knowledge System's product "is a cutting LaDue [8] virulently describes the weaknesses of this
edge, personal Internet content security solution for in- product. In summary, he says that SurfinShield is only
dividual PC users, at home or at work. eSafe Protect good at providing protection against known attacks. Even
Desktop includes a patent-pending anti-vandal sandbox then, it is not very good since the "knowledge" is based on
module, an advanced, ICSA-certified anti-virus scanner, a list of URLs. LaDue's article is a bit dated and probably
a unique personal firewall module, and a comprehensive too rash - the product has definitely improved since the
resource protection system." (http://www.esafe. time of the judgement. But his drastic comments are in-
com/products22/products .html). dicative of shortcomings of all products currently on the

It includes an interesting sandbox feature that can, for market. Many of the general inadequacies common to
example, prevent all programs from modifying the desk- most of these security products are discussed in the next
top, or prevent a specific application from accessing cer- subsection.

16-12

The product does not have antivirus protection; a scp- be successfully protected without being annoyed by repet-
arate tool is needed. itive and often unspecific alert messages.

An interesting feature - once again, at least on paper, Along the same train of thought, the more tools one
- is the SafeZone, which monitors the execution of a bi- has or needs, the more confusion will be brought to the
nary program. It is launched automatically on programs average user. For example, antivirus protection is a must
that come from the net and it can be launched manually to for an organisation, as is protection from malicious code
monitor a specific program. It stops a program from read- and intrusion. A perfect security tool would incorporate
ing or writing files, making network connections, writing protection against all of these aspects in one package, pro-
to the registry, or starting other programs. This works fine viding the user with a single, consistent interface for all
except that, frankly, what useful programs can one run un- aspect of security.
der such constraints? This example illustrates a key con- Finally, most of the COTS Internet security products
cept in security: usability versus security. do not even attempt to address the problem of security

in COTS obtained in executable format (e.g. MS Office,

PC-cillin 6.07 Trend Micro advertises this product Eudora, MapObjects, and so on), which probably still ac-
count for the vast majority of purchased COTS. A com-

as "all the protection you need to face the new In-

ternct frontier!" (http://www.antivirus.com/ plete tool obviously needs to be able to address the prob-

pc- cillin/products.htm). lems of binary programs.

It is a typical example of new, emerging products. It is
primarily an antivirus program that doubles as a malicious
mobile code detector. As users become more aware of 5 Conclusion
the security problems inherent to Internet use, they realise
they need some form of protection. Companies see this Dynamic detection of malicious code has been outlined
opportunity and jump on it by offering their own products. in this paper. This is one of the best techniques to de-

PC-cillin looks like a pretty good antivirus product -- tect malicious activity since it acts at the lowest possible

no tests were made of that use - but it is certainly lack- level: processor instructions. Thus the MalCOTS team

ing as a personal protection tool from the hazards of the concentrates its research effort on collaborative techniques
that include both static and dynamic tools. It is our hope

Internet. Its single primary interface scans only incoming that dnc a s n l static analysis and

mobile code, much the same way that an antivirus program that dynamic analysis can complement static analysis and

does. There are no facilities to protect from malicious files overcome its shortcomings. This will ensure the rigorous

from CDs or an intranet - unless, of course, they contain and efficient integration of COTS packages even when the
viruses. source code is not available.

One of our top priorities at this time is to formalise the
expression of security policy using a good specification

4.3 Shortcomings of COTS Desktop Secu- language to discriminate malicious activities from accept-
rity Products able behaviours. This requires very fine granularity. Cur-

rently, various design possibilities for a common security
First, because they are based on a priori knowledge of ma- specification language are being examined within our re-
licious code, they are unable to deal with unknown attacks, search effort and a technology watch monitors commercial
This is clearly not an acceptable approach since attack- solutions.
ers will always be a step ahead of security tools. Fur- Our team welcomes international collaboration.
thermore, because commercial products of this nature are
often rushed to delivery, they are quite error-prone. The
problem is similar to that of current antivirus utilities, but References
more serious. It would be a full-time job for many users
just to keep up with the patches and, given that in most [1] R. Charpentier and M. Salois. MaliCOTS:Detecting
cases the list of attacks must be updated manually, it is Malicious Code in COTS Sofware. In Commercial
easy to understand that this is not a promising long-term Off-The-Shelf Products in Defence Applications
solution. Future tools need to be able to detect suspicious "The Ruthless Pursuit of COTS", Neuilly-sur-Seine
behaviour on their own. Some form of "intelligence" is Cedex, France, Apr. 2000. NATO, RTO.
needed.

Second, they are usually quite complicated to use. [2] S. Cho. Win32 Disassembler.
Even though the actual level of customisation is rather lim- http ://www. geoc it ie s. com/
ited, an expert is required most of the time, just to keep the S i 1i conval1ey/ Foothi 11 s /4 0 7 8 /, Oct.
product running without overpowering the routine activi- 1998.
ties of the system's users, Future tools need a powerful
specification language for expert users and a very simple [3] C. Colby. Semantics-based Program Analysis via
interface for everyday users. Then security administra- Symbolic Composition of Transfer Relations. PhD
tors can set very precise policies and average users can thesis, Carnegie Mellon University, Aug. 1996.

16-13

[4] T. Inc. Samples. [9] G. McGraw and E. Felten. Java Security Hotlist.
http://www.tego.com/WebFrameSets/ http://www.rstcorp.com/
OcxControlKit/Samples. htm, 2000. javasecurity/hotlist.html.

[5] C. L. Jeffery. A Framework for Monitoring Program [10] F. McLain. ActiveX or How to Put Nuclear Bombs
Execution. Tcchnical Report 93-2 1, University of in Web Pages. http:
Arizona, July 1993. Department of Computer / /www. halcyon. co/clain/ActiveX,
Science, http ://ringer. cs. utsa. edu/ 1997.
research/alamo/.

[6] C. C. W. Ko. Execution Monitoring of [11] D. Neeley. How to Keep Out Bad Characters.
Security-Critical Programs in a Distributed System Security Management Online, 1998.

A Specification Based Approach. PhD thesis, http://www.securitymanagement.corn/
University of California Davis, Aug. 1996. library/ 000599 . html.
Graduate Division.

[7] M. D. LaDue. A Collection of Increasingly Hostile [12] N. Randall. Personal Security Suites. http:
Applets http://www.rstcorpcorn/ //www8. zdnet .com/pcmag/features/hostile- applets//indexohtml. personal_securityiopen. htm, 1997.

[8] M. D. LaDue. The Rube Goldberg Approach to [13] R. M. Smith. ActiveX Security Check Page.
Java Security. http: //www. rstcorp. com/ http://www.tiac.net/users/smiths/
hostile- applets/rube. html, 1998. acctroj/axcheck. htm, 1999.

